Reach-to-grasp movements in Macaca fascicularis monkeys: the Isochrony Principle at work
نویسندگان
چکیده
Humans show a spontaneous tendency to increase the velocity of their movements depending on the linear extent of their trajectory in order to keep execution time approximately constant. Termed the isochrony principle, this compensatory mechanism refers to the observation that the velocity of voluntary movements increases proportionally with their linear extension. Although there is a wealth of psychophysical data regarding isochrony in humans, there is none regarding non-human primates. The present study attempts to fill that gap by investigating reach-to-grasp movement kinematics in free-ranging macaques. Video footage of monkeys grasping objects located at different distances was analyzed frame-by-frame using digitalization techniques. The amplitude of arm peak velocity was found to be correlated with the distance to be covered, and total movement duration remained invariant although target distances varied. Like in humans, the "isochrony principle" seems to be operative as there is a gearing down/up of movement velocity that is proportional to the distance to be covered in order to allow for a relatively constant movement duration. Based on a centrally generated temporal template, this mode of motor programming could be functional in macaques given the high speed and great instability of posture and joint kinematics characterizing their actions. The data presented here take research in the field of comparative motor control a step forward as they are based on precise measurements of spontaneous grasping movements by animals living/acting in their natural environment.
منابع مشابه
Spatial Representations in Local Field Potential Activity of Primate Anterior Intraparietal Cortex (AIP)
The execution of reach-to-grasp movements in order to interact with our environment is an important subset of the human movement repertoire. To coordinate such goal-directed movements, information about the relative spatial position of target and effector (in this case the hand) has to be continuously integrated and processed. Recently, we reported the existence of spatial representations in sp...
متن کاملGrasping in Primates: Mechanics and Neural Basis
We investigate the encoding of grasping kinematics in the primary motor cortex of rhesus monkeys (Macaca mulatta). Previous work in the Schwartz lab has demonstrated cortical control of an anthropomorphic arm and a simple gripper. We aim to replace the gripper with a ‘primate-like hand’ — this work is a study towards that goal. In our experiment two rhesus monkeys are trained to perform reach-t...
متن کاملEye movements reveal planning in humans: A comparison with Scarf and Colombo's (2009) monkeys.
On sequential response tasks, a long pause preceding the first response is thought to reflect participants taking time to plan a sequence of responses. By tracking the eye movements of two monkeys (Macaca fascicularis), Scarf and Colombo (2009, Eye Movements During List Execution Reveal No Planning in Monkeys [Macaca fascicularis], Journal of Experimental Psychology: Animal Behavior Processes, ...
متن کاملPurkinje cells signal hand shape and grasp force during reach-to-grasp in the monkey.
The cerebellar cortex and nuclei play important roles in the learning, planning, and execution of reach-to-grasp and prehensile movements. However, few studies have investigated the signals carried by cerebellar neurons during reach-to-grasp, particularly signals relating to target object properties, hand shape, and grasp force. In this study, the simple spike discharge of 77 Purkinje cells was...
متن کاملEvidence for both reaching and grasping activity in the medial parieto-occipital cortex of the macaque.
In humans, the caudal pole of the superior parietal lobule is involved in the control of both reaching and grasping movements, whereas in monkey it is reported to be involved only in the control of reaching. Using single-unit recordings from trained macaque monkeys, we investigated whether area V6A, a visuomotor area located in the caudal part of the posterior parietal cortex, is involved in bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013